Rescue of motor coordination by Purkinje cell-targeted restoration of Kv3.3 channels in Kcnc3-null mice requires Kcnc1.

نویسندگان

  • Edward C Hurlock
  • Mitali Bose
  • Ganon Pierce
  • Rolf H Joho
چکیده

The role of cerebellar Kv3.1 and Kv3.3 channels in motor coordination was examined with an emphasis on the deep cerebellar nuclei (DCN). Kv3 channel subunits encoded by Kcnc genes are distinguished by rapid activation and deactivation kinetics that support high-frequency, narrow action potential firing. Previously we reported that increased lateral deviation while ambulating and slips while traversing a narrow beam of ataxic Kcnc3-null mice were corrected by restoration of Kv3.3 channels specifically to Purkinje cells, whereas Kcnc3-mutant mice additionally lacking one Kcnc1 allele were partially rescued. Here, we report mice lacking all Kcnc1 and Kcnc3 alleles exhibit no such rescue. For Purkinje cell output to reach the rest of the brain it must be conveyed by neurons of the DCN or vestibular nuclei. As Kcnc1, but not Kcnc3, alleles are lost, mutant mice exhibit increasing gait ataxia accompanied by spike broadening and deceleration in DCN neurons, suggesting the facet of coordination rescued by Purkinje-cell-restricted Kv3.3 restoration in mice lacking just Kcnc3 is hypermetria, while gait ataxia emerges when additionally Kcnc1 alleles are lost. Thus, fast repolarization in Purkinje cells appears important for normal movement velocity, whereas DCN neurons are a prime candidate locus where fast repolarization is necessary for normal gait patterning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purkinje-cell-restricted restoration of Kv3.3 function restores complex spikes and rescues motor coordination in Kcnc3 mutants.

The fast-activating/deactivating voltage-gated potassium channel Kv3.3 (Kcnc3) is expressed in various neuronal cell types involved in motor function, including cerebellar Purkinje cells. Spinocerebellar ataxia type 13 (SCA13) patients carrying dominant-negative mutations in Kcnc3 and Kcnc3-null mutant mice both display motor incoordination, suggested in mice by increased lateral deviation whil...

متن کامل

Ablation of Kv3.1 and Kv3.3 potassium channels disrupts thalamocortical oscillations in vitro and in vivo.

The genes Kcnc1 and Kcnc3 encode the subunits for the fast-activating/fast-deactivating, voltage-gated potassium channels Kv3.1 and Kv3.3, which are expressed in several brain regions known to be involved in the regulation of the sleep-wake cycle. When these genes are genetically eliminated, Kv3.1/Kv3.3-deficient mice display severe sleep loss as a result of unstable slow-wave sleep. Within the...

متن کامل

Motor dysfunction and altered synaptic transmission at the parallel fiber-Purkinje cell synapse in mice lacking potassium channels Kv3.1 and Kv3.3.

Micelacking both Kv3.1 and both Kv3.3 K+ channel alleles display severe motor deficits such as tremor, myoclonus, and ataxic gait. Micelacking one to three alleles at the Kv3.1 and Kv3.3 loci exhibit in an allele dose-dependent manner a modest degree of ataxia. Cerebellar granule cells coexpress Kv3.1 and Kv3.3 K+ channels and are therefore candidate neurons that might be involved in these beha...

متن کامل

Title: Dendritic Kv3.3 Potassium Channels in Cerebellar Purkinje Cells Regulate 4 Generation and Spatial Dynamics of Dendritic Ca

27 Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances 28 contributing to the generation and propagation of electrical activity. Voltage-gated 29 potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. 30 However, the functional relevance of this dendritic distribution is not understood. 31 Moreover, mutations in Kv3.3 cause ...

متن کامل

Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 50  شماره 

صفحات  -

تاریخ انتشار 2009